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Abstract 

In response to G.Belot’s (2013) criticism that Bayesian theory is epistemologically 

immodest, we argue that his analysis is misguided.  The topological conditions that we 

understand underpin his criticisms of familiar results about asymptotic Bayesian 

conditioning are self-defeating.  They require extreme a priori credences regarding, e.g., 

the limiting behavior of observed relative frequencies.  Instead, we offer a rival 

explication of Bayesian modesty:  Rival scientific opinions should be responsive to new 

facts as a way to resolve their disputes. Using a result of Blackwell and Dubins (1962), 

we explain how amenability to new evidence may serve as the basis for resolving 

conflicts among Bayesian investigators.  When the new evidence fails to achieve a 

resolution, that failure can identify epistemologically immodest Bayesian credal states.  

Also we assess A. Elga’s (2016) rebuttal to Belot’s analysis.  He focuses attention on the 

role that the assumption of countable additivity plays in Belot’s criticism of asymptotic 

Bayesian learning. 

 

 

1. Introduction. Consider the following compound result about asymptotic  

statistical inference.  A community of Bayesian investigators who begin an investigation 

with conflicting opinions about a common family of statistical hypotheses use shared 

evidence to achieve a consensus about which hypothesis is the true one.  Specifically, 

suppose the investigators agree on a partition of statistical hypotheses and share 

observations of an increasing sequence of random samples with respect to whichever is 

the true statistical hypothesis from this partition.1  Then, under various combinations of 

formal conditions that we review in this essay, ex-ante (i.e., prior to accepting the new 

																																																								
1	Let H be a (simple) statistical hypothesis for the random variable X, i.e., where the conditional probability 
distribution P(X | H) is well defined.  Given H, a random sample of size n from this distribution, {X1, …, 
Xn} has a joint distribution that is identically, independently distributed (iid) with respect to P(X | H):   
P(X1, …, Xn | H) =  P(X$	|	H))

$*+ . 
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evidence) it is practically certain that each of the investigators’ conditional probabilities 

approach 1 for the one true hypothesis in the partition.   

 

The result is compound: individual investigators achieve asymptotic certainty about the 

unknown, true statistical hypothesis.  Second, the shared evidence leads to a consensus 

among the different investigator’s individual degrees of belief.  The initial disagreements, 

the disparate initial credences about different hypotheses, are resolved with increasing 

shared evidence.  Stated in more familiar Bayesian terms, it is practically certain that the 

likelihood function based on the shared statistical evidence swamps differences in initial 

prior credences to produce a consensus among posterior credences.   

 

The strategy to use asymptotics of Bayesian inference to defend against charges of 

excessive subjectivity is highlighted in the seminal work of Savage (1954, Sections 3.6 

and 4.6), and Edwards, Lindman, and Savage (1963).  Savage’s (1954) results apply to a 

finite set of investigators who hold non-extreme views over a common finite partition of 

statistical hypotheses.2  He establishes that – using a (finitely additive) weak-law of large 

numbers – given increasing statistical evidence from a sequence of random samples, with 

probability approaching 1, different non-extreme personalists’ conditional probabilities 

become ever more concentrated on the same one true statistical hypothesis from among a 

finite partition of rival statistical hypotheses.3,4  To repeat, the result is compound.  It 

																																																								
2	Say that an investigator with degree of belief represented by a probability P(×) holds a non-extreme 
opinion about an event E if  0 < P(E) < 1.  	
3 Savage’s (1954) axiomatic theory of preference, based on postulates P1-P7, is about an idealized 
Bayesian agent’s static preference relation over pairs of acts – preferences at one time in the idealized 
agent’s life.   The theory of personal probability and conditional probability that follows from P1-P7 is 
about an idealized agent’s epistemic state at that one time: her/his degrees of belief and conditional degrees 
of belief at that one time.  More familiar in the Bayesian literature is a dynamic Bayesian rule where 
conditional probability models the idealized agent’s changing beliefs over time, when new evidence is 
accepted.  For details on differences between the static and dynamic use of conditional probability, see Levi 
(1984, §4.3).  
4 We illustrate the weak and strong laws of large numbers for independent, identically distributed Bernoulli 
trials.  Let X be a Bernoulli variable with possible values {0, 1}, where P(X = 1) = p, for some 0 ≤ p ≤ 1.  
Let Xi (i = 1, 2, …) be a denumerable sequence of Bernoulli variables, with a common parameter P(Xi = 1) 
= p and where trials are independent.  Independence is expressed as follows.  For each n = 1, 2, …, let Sn = 

𝑋))
$*+ . Then P(X1 = x1, …, Xn = xn)  = 𝑝./×(1 − 𝑝)()3./).  

 
The weak-law of large numbers for iid Bernoulli trials asserts that for each e > 0,  

    limn®¥ P(|Sn/n – p| > e) = 0.   
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addresses both issues of certainty and consensus among finitely many investigators over 

a finite partition of statistical hypotheses, assuming they share an increasing sequence of 

observations from random sampling.   

 

Savage offers these findings as a partial defense against the accusation, voiced by 

frequentist statisticians of the time, that the theory of (Bayesian) personalist statistics is 

fraught with subjectivism and cannot serve the methodological needs of the Scientific 

community, where objectivity is required.  The central theme in Savage’s response is to 

understand ‘objectivity’ in terms of shared agreements about the truth, particularly, when 

the shared agreements arise from shared statistical evidence.  In summary, Savage 

provides sufficient conditions for when Bayesian methodology makes it ex-ante almost 

certain that shared evidence secures this kind of objectivity for a well-defined community 

of investigators.  

 

Savage (1954, p. 50) notes that his result about asymptotic certainty can be extended in 

several ways, by adapting the central limit theorem, the strong law of large numbers, and 

the law of the iterated logarithm to sequences of conditional probabilities generated by an 

increasing sequence of random samples.  The last two of these laws require stronger 

assumptions than are needed for the finitely additive weak-law convergence result that 

Savage presents.  Specifically, these stronger results require the assumption that 

(conditional) probabilities are countably additive. 

 

Savage’s twin results have been strengthened also to include shared evidence from non-

random samples. Consider an uncountably infinite probability space generated by 

increasing finite sequences of observable random variables, not necessarily forming a 

random sample with respect to a statistical hypothesis of interest.  Rather than requiring 

that different agents hold non-extreme views about all possible events in the space of 

observables, which is mathematically impossible with real-valued probabilities once the 

																																																																																																																																																																					
The strong-law of large numbers asserts that,  

    P(limn®¥ Sn/n = p) = 1.   
If P is countably additive, the strong-law version entails the weak-law version.	
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space is uncountable, instead require that they agree with each other about which events 

in this uncountably infinite space of observables have probability 0.  They share in a 

family of mutually absolutely continuous probability distributions.  If the agents’ personal 

probabilities over these infinite spaces also are countably additive, then strong-law 

convergence theorems yield strengthened results about asymptotic consensus (see, e.g. 

Blackwell and Dubins, 1962) and also about asymptotic certainty for events defined in 

the space of sequences of increasing shared evidence.   We discuss several of these 

results in Section 4.  There we use considerations both of certainty and consensus to 

explicate epistemic modesty within a Bayesian framework that contrasts with a critical 

assessment of Bayesian theory offered by G. Belot (2013), whose work we next consider. 

 

2. Orgulity as identified by comparing meager sets versus null sets.    

In a 2013 paper in this Journal, critical about the methodological significance of some of 

the strengthened versions of Savage’s convergence result for asymptotic certainty, G. 

Belot arrives at a harsh conclusion: 

The truth concerning Bayesian convergence-to-the truth results is significantly 

worse than has been generally allowed – they constitute a real liability for 

Bayesianism by forbidding a reasonable epistemological modesty.  

[Belot, 2013] p. 502 

Below, we argue that this verdict is misguided.  The criteria for reasonable epistemic 

modesty that we understand underpin Belot’s analysis are self-defeating; hence, his 

argument is not compelling.  When the criteria that we attribute to Belot are satisfied they 

induce unreasonable epistemic apriorism regarding, e.g., how sequences of observed 

relative frequencies behave. 

 

What makes a (coherent) Bayesian credal state over-confident and lacking in 

epistemological modesty?  Does the Bayesian position generally forbid “a reasonable 

epistemological modesty,” as Belot intimates?  These questions are both interesting and 

imprecise.  There is no doubting that the standard of mere Bayesian coherence for a 

credal state, as formalized in de Finetti’s (1937) theory, falls short of characterizing the 

set of reasonable credal states.  To use an old and tired example, a person who thinks 



	 5	

each morning that it is highly probable that the world ends later that afternoon does not 

thereby violate the technical norms of coherence.   

 

In order to identify a brand of unreasonableness captured in over-confident, 

epistemologically immodest credal states, Belot supplements Bayesian coherence with a 

topological standard for respecting what he calls a typical event:  He defines a typical 

event as a topologically large event.  When a coherent agent assigns probability 0 to a 

topologically large set, specifically when a probability null set is comeager, Belot thinks 

that is a warning sign of epistemological immodesty.5  Such a Bayesian agent is 

practically certain that the topologically typical event does not occur.  And then Bayesian 

conditioning (almost surely) preserves that certainty in the face of new evidence.   So, the 

Bayesian agent is not open-minded because, in dismissing as probabilistically negligible a 

topologically typical event E, also (almost surely) she is aware ex-ante that Bayesian 

conditioning precludes learning that the typical event E occurs.   

 

We understand Belot’s criticism (2013, Section 4) to be that Bayesian convergence-to-

the-truth results about hypotheses that are formulated in terms of sets of observable 

sequences fail this concern about typical events.  The strengthened convergence results 

allow the Bayesian agent to dismiss (ex-ante) a probabilistically negligible set of 

sequences of observations where the convergence-to-the-truth fails.  This set has “prior” 

probability 0.  Except, Belot complains, that failure set may be comeager in the usual 

topology for the sequences of observables.  Hence, the failure set may be a typical event 

in the space of observables, about which a modest investigator should keep an open mind.  

But, instead, Bayes updating (almost surely) ignores these typical events by continuing to 

assign them probability 0, even as the evidence grows.  Thus, the strengthened 

asymptotic certainty results that Belot criticizes do not conform to the topological 

standards of epistemic modesty in the sense of modesty that we understand he advocates.   

 

																																																								
5	A topologically meager set is one that is a denumerable union of nowhere dense sets.  A comeager set, or 
a residual set, is the complement of a meager set.	
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Though he does not explicitly formulate criteria for immodesty, based on the examples 

and analysis he offers, we understand Belot’s primary requirements to be these two6:  

• Topological Condition #1: Do not assign probability 1 to a meager set of observables. 

Also, we find that Belot argues for a more demanding standard,7  

• Topological Condition #2: Assign probability 0 to each hypothesis that is a meager 

set in the space of sequences of observables. 

 

Ordinary statistical models violate Topological Condition #1 by their unconditional 

probabilities, independent of whether learning is by Bayesian updating.  Already, 

Condition #1 is inconsistent with the strong laws of large numbers, including the ergodic 

theorem, which are asymptotic results for unconditional probabilities. (See Oxtoby [1980, 

p. 85].)   

 

Here we show that Topological Condition #2 entails a radical probabilistic apriorism 

towards observed relative frequencies that has little to do with questions about Bayesian 

over-confidence.  In particular, this topological standard requires that with probability 1, 

relative frequencies for an arbitrary sequence of (logically independent) events oscillate 

maximally.  From a Bayesian point-of-view, almost surely new evidence leaves this 

extreme epistemic attitude wholly unmodified.  A Bayesian agent whose credal state 

conforms to Condition #2 knows ex-ante that she is practically certain never to change 

her mind that the relative frequencies for a sequence of events oscillate maximally.  In 

this sense, we find that Conditions #1 and #2 are self-defeating through a lack of 

																																																								
6 A helpful referee suggests that Belot might instead restrict Topological Condition #1 to the space of 
chance hypotheses rather than extending it to the space of observables as we do.  However, Belot’s 
criticism of Bayesian methodology in Section 4 of his (2013) depends upon applying topological standards 
for a “typical event” to probabilities over hypotheses defined in terms of sequences of observables.  There 
are no chance hypotheses in those cases. 
7	Belot	(2013,	p.	488),	Remark	2,	notes	that	when	R	is	a	meager	element	of	a	measurable	space	<W,	
B>	then	the	set	of	probabilities	that	assign	R	probability	0	is	comeager	in	the	space	of	probability	
distributions	on	the	same	measurable	space	<W,	B>.		This	points	to	what	we	label	as	Topological	
Condition	#2.		It	is	a	higher-order	application	of	Belot’s	idea	that	a	topologically	typical	set		(i.e.,	a	
comeager	set)	should	be	reflected	with	probability	1.		For	Condition	#2,	that	reasoning	is	applied	to	
typical	sets	of	probabilities.			
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humility.  They promote excessive apriorism with respect to ordinary properties of 

limiting frequencies.  

 

The Bayesian convergence-to-the-truth results that are the subject of Belot’s complaints 

are formulated as probability strong-laws that hold almost surely or almost everywhere.   

In order to make clear why we think Belot’s verdict is mistaken thinking these results 

about convergence to the truth are a liability for Bayesian theory, revisit the familiar 

instance of the strong law of large numbers, as reported in fn. 4. 

 

Let <W, B, P> be the countably additive measure space generated by all finite sequences 

of repeated, probabilistically independent [iid] flips of a “fair” coin.  Let 1 denote a 

“Heads” outcome and 0 a “Tails” outcome for each flip.  Then a point x of W is a 

denumerable sequence of 0s and 1s, x = <x1, x2, … >, with each xn Î {0, 1} for n = 1, 2, 

… .   Let Xn(x) = xn designate the random variable corresponding to the outcome of the 

nth flip of the fair coin.   B is the Borel s-algebra generated by rectangular events, those 

determined by specifying values for finitely many coordinates in W.  P is the countably 

additive iid product fair-coin probability that is determined by  

    P(Xn = 1) = 1/2  (n = 1, 2, …)  

and where each finite sequence of length n is equally probable,  

    P(X1 = x1, …, Xn = xn)  = 2-n.  

 

Let L½ be the set of infinite sequences of 0s and 1s with limiting frequency ½ for each of 

the two digits: a set belonging to B.  Specifically, let Sn = 𝑋))
$*+ .  Then L½ = {x: 

limn®¥ Sn/n = 1/2}.  The strong-law of large numbers asserts that P(L½) = 1.  What is 

excused with the strong law, what is assigned probability 0, is the null set N (= [L½]c) 

consisting of the complement to L½ among all denumerable sequences of 0s and 1s.  

 

The null set N is large, both in cardinality, and in category under the product topology for 

2w.  It is a set with cardinality equal to the cardinality of its complement, the cardinality 
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of the continuum.8  When 2w is equipped with the infinite product of the discrete 

topology on {0, 1},9 then the null set N is topologically large.  N is a comeager set 

(Oxtoby, 1980, p. 85).10  That is, the set L½ is meager and so is judged topologically 

“small,” or atypical.  By Condition #1, a Bayesian who adopts the fair coin model for 

her/his credences is epistemologically immodest with respect to denumerable sequences 

of possible coin flips: the space of sequences of observations that drive the asymptotic 

certainty result. 

 

This strong-law counterexample to Condition #1 should come as no surprise in the light 

of the following result, reported by Oxtoby (1980, T.1.6):  

(*) Each non-empty interval on the real line may be partitioned into two sets, {N, M} 

where N is a Lebesgue measure null set and its complement M = Nc is a meager set. 

 

Oxtoby generalizes (*) with his Theorem T.16.5.11  In his illustration of T.16.5 using the 

strong-law of large numbers, the binary partition {N, L½} displays the direct conflict 

between the measure theoretic and topological senses of small.  N has probability 0 under 

the fair-coin model, and L½ is a meager set in the product topology of the discrete 

topology on {0,1}.  The tension between the two senses of small is not over some 

																																																								
8 For each 0 £ y £ 1, with y ¹ ½, N contains at least one sequence with limiting relative frequency y, and 
these are pairwise different sequences for different values of y. 
9	This	product	topology	is	homeomorphic	to	the	Cantor	Space.	
10 Oxtoby sketches the proof of this claim in the Supplementary Notes [1980, p. 99].  The claim follows 
from an elegant application of the Banach-Mazur Game.  Belot’s (2013, p. 498) Remark 5, fn. 41, adapts 
Oxtoby’s argument to show the following. 
Consider a point x in Cantor Space.  A prior P is “open minded” with respect to the hypothesis x provided 
that, given any finite initial segment of x, (x1, …, xm), there is a finite continuation (x1, …, xm, xm+1, …, xn) 
where P({x) | (x1, …, xn) ) > .50, and there exists some other finite continuation of (x1, …, xm), (xm+1, …, xn’) 
where P({x) | (x1, …, xn’) ) < .50.  Say that hypothesis x flummoxes prior P provided that, for infinitely 
many values of n, P({x} | (x1, …, xn)) > .50 and for infinitely many values of n, P({x} | (x1, …, xn)) <. 50.   
Then, the set of sequences in Cantor Space (i.e., the set of hypotheses) that flummoxes an open minded P is 
comeager in the infinite product topology on Cantor Space.  What Belot observes is a special case of 
Proposition (**), which we introduce and discuss on the next page. 
 
11 Oxtoby’s [1980, p. 64] Theorem 16.5 establishes that if the measure space < X, B, P>, satisfies 
• P is nonatomic,  
• X has a metrizable topology T with a base whose cardinality is less than the first weakly inaccessible,  
• and, the s-field B includes the Borel sets of T,  
then X can be partitioned into a set of P-measure 0 and a meager set. 
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esoteric binary partition of the space of binary sequences, but applies to the event that the 

sequence of observed outcomes has a limiting frequency 1/2. 

 

We exemplify the general conflict encapsulated in Oxtoby’s T. 16.5 with the following 

claim, which we use to criticize Condition #2. 

Consider the space 2w, with points x = <x1, x2, … > of denumerable sequences of 0s and 

1s, equipped with the infinite product of the discrete topology on {0,1}.   Define the set 

of sequences L<0,1>consisting of those points x whose relative frequency does not oscillate 

maximally, i.e., where,    

lim.inf. 𝑥)
5*+ j/n  > 0  or  lim sup. 𝑥)

5*+ j/n  <  1. 

The complement to L<0,1>, OM = [L<0,1>]c, is the set of binary sequences whose observed 

relative frequencies Oscillate Maximally. 

 

(**)   Proposition:  L<0,1> is a meager set, i.e., OM is a comeager set.12  

 

Theorem A1 of the Appendix establishes that sequences of logically independent random 

variables that oscillate maximally are comeager with respect to infinite product 

topologies on the sequence of random variables.  Proposition (**) is a corollary to 

Theorem A1 applied to binary sequences, i.e. where there are only two categories for 

observables. 

 

What Proposition (**) establishes is that only extreme probability models of relative 

frequencies satisfy Topological Condition #2.  That is, consider a measure space <2w, B, 

P> where B includes the Borel sets from 2w, and where 2w is equipped with the infinite 

product of the discrete topology as above.  Each probability with P(L<0,1>) > 0 produces 

a non-null set that is meager.   

																																																								
12	This	Proposition	is	established	by	Calude	and	Zamfirescu	(1999)	using	an	application	of	Oxtoby’s	
(1957)	theorem	for	the	Banach-Mazur	Game.		In	Appendix	A,	we	establish	the	more	general	Theorem	
A1	with	a	direct	argument,	which	extends	beyond	Oxtoby’s	(1957)	theorem	for	the	Banach-Mazur	
Game,	and	which	has	the	Proposition	(**)	as	a	Corollary.	
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Unless a probability model P for a sequence of relative frequencies assigns probability 1 

to the set of sequences of observed frequencies that oscillate maximally, then P assigns 

positive probability to a meager set of sequences, in violation of Condition #2.  

Evidently, the standard for epistemological modesty formalized in Topological Condition 

#2, which requires meager sets of relevant events be assigned probability 0, itself leads to 

probabilistic orgulity because it requires an unreasonable a priori opinion about how 

observed relative frequencies behave.  Let P satisfy Condition #2.  Given evidence of a P-

non-null observation o of observed relative frequencies, the resulting conditional 

probability leaves this extreme a priori opinion unchanged: P(OM | observation o) = 1.   

 

Familiar Bayesian models also violate the weaker Topological Condition #1.  Consider 

an exchangeable probability model over 2w.  Then, by de Finetti’s Theorem [1937] each 

exchangeable probability assigns probability 1 to the set L of sequences with well defined 

limiting frequencies for 0s and 1s.  That is, then P{x: lim.inf. 𝑥)
5*+ j/n  =  lim. sup. 

𝑥)
5*+ j/n} = 1.  But L is a subset of L<0,1>; hence, L is a meager set.   

 

In summary, our understanding is that Belot applies Topological Conditions #1 and #2 in 

order to identify an epistemically immodest coherent credal state.  We find that each of 

these two conditions is excessively restrictive and is self-defeating as a criterion for 

epistemic immodesty.  The credences that satisfy these conditions with respect to the sets 

of sequences of observables that ground the almost-sure Bayesian convergence results 

embed extreme a priorism about, e.g., the limiting behavior of observed relative 

frequencies.   

 

In Section 4, below, we argue that a better account of Bayesian epistemological 

modesty/immodesty uses interpersonal standards for asymptotic consensus within a 

community of investigators about the set of certainties that arise from an idealized 

sequence of observations.  Belot’s approach for identifying epistemic immodesty applies 

topological conditions of adequacy to a stand-alone credence function and avoids issues 
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of consensus.  In contrast, we supplement coherence with criteria involving asymptotic 

consensus among a community of investigators about which certainties they might 

acquire based on a sequence of shared evidence.   

 

 

3. But what if probability is merely finitely additive and not countably additive?  

Elga (2016) responds to Belot’s criticism by focusing on the premise of countable 

additivity for probability, which is needed for the strong-law versions of Savage’s 

convergence result.  The subjective theory of probability, especially as promoted by de 

Finetti (1974), Dubins and Savage (1965) and Savage (1954), does not mandate 

countable additivity for credences.  This added generality is of importance for 

contemporary Bayesian practice, as argued in Kadane et al. (1986).   

 

As we understand Elga’s response to Belot’s criticism, it is based on an example.  The 

example purportedly shows how, using a finitely but not countably additive probability P, 

Belot’s standard for being an open-minded Bayesian credal state may be satisfied without 

also being burdened with the immodesty of treating a comeager failure set as a P-null set, 

as follows when probability is countably additive.  Elga argues that, in his example, the 

associated set of data-sequences where the convergence to the truth result fails with the 

credal state P has positive P-probability, contrary to what happens in the countably 

additive case.  Elga asserts that in his example, the agent’s finitely additive conditional 

probabilities do not (almost surely) converge to the true statistical hypothesis about 

limiting relative frequencies; hence, such a Bayesian agent escapes Belot’s criticism as 

this agent is epistemologically humble about becoming certain of the true limiting relative 

frequency in the observed sequence. 

 

First and foremost, we dispute Elga’s analysis of the specific example he offers. We 

argue that, contrary to Elga’s assessment, his merely finitely additive probability model P 

satisfies a finitely additive convergence-to-the-truth theorem that is needed to defend 

Bayesian learning. The Bayesian agent of Elga’s example is not humble about whether 

(with increasing probability) she will achieve asymptotic certainty for the limiting 
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frequency hypothesis in question:  At each stage of her investigation, looking forward, 

she remains practically certain that her posterior probability will converge to the true 

limiting frequency hypothesis.   

 

Second, the credal state P in Elga’s example fails what we call Belot’s Condition #1.  P 

assigns probability 1 to a meager set of sequences of observations.  Hence, though Elga 

argues that P is modest with respect to one limiting frequency hypothesis, according to 

Condition #1 P is immodest for a different but related hypothesis about existence of well-

defined limiting frequencies. 

 

Nonetheless, we agree with Elga (and with others who have argued the same point 

previously) that finitely but not countably additive probability models allow failures of 

the strengthened convergence results.  We illustrate this point using a finitely additive 

probability, P’, that is a simple variant of Elga’s model P.  But in our judgment, this 

phenomenon – where a finitely additive model P’ fails the strengthened convergence-to-

the-truth result – does not provide a satisfactory rebuttal to Belot’s criticism.  Belot’s 

criticism, which is directed at countably additive credences, is that they display Bayesian 

orgulity.  To argue that, on the contrary, the finitely additive probability P’ assigns 

positive probability to a set of sequences where convergence to the truth fails, does not 

show that such a merely finitely additive probability is reasonable.   

 

According to the rival standards for epistemic modesty that we offer in Section 4, such a 

finitely additive probability P’ is unreasonable on two counts simultaneously:  The 

Bayesian agent with credence P’ knows in advance that each data sequence that might be 

observed will fail to induce certainty, both in the short term and in the limit.  Also, P’ 

fails the test for reasonableness based on consensus. That is, the agent with credences 

fixed by P’ does not reach consensus with other members of a community of 

investigators who use countably additive credences and agree with P’ about which (finite) 

sequences of observables are probability-0 events.  But the others reach consensus among 

themselves.     
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For a detailed discussion of Elga’s example, begin with a review of some relevant 

mathematical considerations.  When probability P is defined for a measurable space, the 

principle of countable additivity has an equivalent form as a principle of Continuity.  Let 

Ai (i = 1, … ) be a monotone sequence of (measurable) events, where  limi Ai = A, also is 

a (measurable) event.  

• Continuity  P(A) = limi P(Ai).  

 
When probabilities satisfy Continuity, the probabilities for a class C of events that form a 

field also determine uniquely the probabilities for the smallest s-field generated by C.  

(See Halmos [1950], Theorem 13A.)  And if an event H belongs to that s-field, then H 

can be approximated in probability by events from the field C.   Specifically, for each e > 

0 there exists a Ce Î C such that P([H-Ce] È [Ce-H]) < e.  (See Halmos [1950], Theorem 

13D.)  This result has important consequences when H is a tail-field event in 2w.13   

 

Consider the countably additive probability P for iid flips of a fair coin and, for example, 

the tail-field event L½ in 2w.  Then, L½ can be approximated ever more precisely in 

probability by a sequence of finite-dimensional events {En: n = 1, … }, each of which is 

determined by a finite number of coordinates from the set of denumerable binary 

sequences, 2w.  Choose a sequence, {en > 0: n =1, … }, with limn en = 0.  That is, for each 

n = 1, …, P([L½- En] È [En - L½]) < en and each En depends upon only finitely many 

coordinates from 2w.  With P the product measure for iid fair-coin flips and L½ the tail-

field event that is to be approximated, then the finite dimensional events En may be 

chosen as the set of sequences with relative frequency of 1’s sufficiently close to ½ 

through the first n trials.  However, when Continuity fails, and P is merely finitely 

																																																								
13	An	event	T	belongs	to	the	tail-field	of	2w	provided	that,	when	a	point	x	belongs	to	T,	so	too	does	
each	point	x’	that	differs	in	only	finitely	many	coordinates	from	x.		It	is	straightforward	to	verify	that	

the	set	of	tail-field	events	of	2
w
	form	a	field.			



	 14	

additive but not countably additive, then the probabilities over C may fail to define the 

probabilities over the smallest s-field generated by C.    

 

For example, pick two values 0 £ p ¹ q £ 1.  A coherent, merely finitely additive 

probability Pp,q on 2w may assign values to each finite-dimensional event according to iid 

trials with constant Bernoulli probability p, but assign probabilities to the tail-field events 

according to iid trials with constant Bernoulli probability q. Then, the strong law of large 

numbers does not entail the weak-law of large numbers with the same values. While 

finite sequences of 0s and 1s follow an iid Bernoulli-p product law, with Pp,q probability 

1, the tail-event of the limiting relative frequency for 1s is q.  This phenomenon is at the 

heart of Elga’s example. 

 

Let P be a merely finitely additive probability on the Borel s-algebra of 2w where  

P(×) = [Pp,q(×) + Pq,p(×)] / 2.  Elga considers the case with p = 1/10 and q = 9/10.   This 

finitely additive probability assigns probability ½ to the tail-field event L1/10 (the set of 

sequences with limiting frequency 1/10) and probability ½ to the tail-field event L9/10 (the 

set of sequences with limiting frequency .9).  For x Î 2w, let IL
1/10(x) be the indicator 

function for the event L1/10 and IL
9/10(x) the indicator function for the event L9/10.  So, P{x: 

IL
1/10(x) + IL

9/10(x) = 1} = 1.  Thus, we see from the Proposition of Section 2, Elga’s 

example stands in violation of Topological Condition #1, since with P-probability 1 the 

sequence of coin flips has a convergent limiting relative frequency.  This forms a meager 

set of among the set of all binary sequences.    

 

Elga asserts that the conditional probabilities associated with the (merely) finitely 

additive P-distribution fail the almost-sure strong-law convergence result.  Here is the 

argument his offers for that conclusion.  Let x be an element of the set L1/10, a sequence 

with limiting relative frequency 1/10, which is practically certain to occur according to 

the P-distribution on sequences if and only if the P9/10, 1/10 coin is flipped.  (Otherwise, 

with P-probability 1, a sequence x almost surely has a limiting relative frequency 9/10, 
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since it is then following a P1/10, 9/10 law.)  Then, for each e > 0 there exists integer 

ne, such that for each n > ne, the observed sequence {X1, …, Xn} has a relative frequency 

of 1s close enough to 1/10 so that the posterior probability satisfies, P(L9/10 | X1, …, Xn)  

> 1-e.   

 

This conditional probability assigns high probability to the event L9/10 that the limiting 

frequency of the sequence is .9 even though the sequence that generates the observations 

in fact has limiting frequency 1/10.  In this sense, the sequence of conditional 

probabilities generated by x (an element of the set L1/10) converge to the wrong tail-field 

event, L9/10, even though the sequence that generates the observations has limiting 

frequency 1/10.  Likewise, the convergence is to the wrong tail-field event, L1/10, when 

the sequence is generated by an element of the set L9/10.   Elga concludes that conditional 

probabilities from this merely finitely additive P-model do not satisfy the (almost-sure) 

strong-law convergence-to-the-truth results.  Then, regarding either tail-field event L1/10 

or L9/10, the agent with conditional credences fixed by probability P is both open-minded 

and modest.14  But this analysis is misleading regarding convergence-to-the-truth because 

it conditions on P-null events, as we now explain.    

 

Define the denumerable set of countably additive probabilities {Pn} on	2w	so that Pn is 

the iid product of a Bernouilli-p probability for the first n-coordinates and is the iid 

product of a Bernouilli-q probability for all coordinates beginning with the n+1st position.  

Each Pn is a countably additive probability on the measurable space <2w, B>.  

Distribution Pn has a change point after the nth trial.  Let the change point, N = n, be 

chosen according to a purely finitely additive probability, with P(N = n) = 0, n = 1, 2, … .  

Finally, let P be the induced (marginal) unconditional probability on the Borel s-algebra 

of sequences of coin-flips, <2w, B>.   

																																																								
14	Regarding	each	of	the	two	tail-field	hypotheses,	L1/10	and	L9/10,		the	P-credences	are	open-minded,	
since	P(L1/10|	X1,	…,	Xn)	may	cross	the	0.5	threshold,	in	either	direction,	as	a	function	of	finitely	many	
future	observations,	{Xn+1,	…,	Xn+k}.		The	P-credences	are	modest,	since	ex	ante,	given	that	the	infinite	
sequence	x	belongs	to	L1/10	(or	to	L9/10)	the	agent	assigns	probability	greater	than	0	to	the	respective	
failure	set	of	sequences.		
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As required for Elga’s construction, this finitely additive probability P behaves as Pp,q.  

Its distribution is the iid product of a Bernoulli-p distribution on finite dimensional sets, 

and is the iid product of a Bernoulli-q distribution on the tail-field events.15   P satisfies 

the weak-law of large numbers over finite sequences with Bernoulli parameter p and 

satisfies the strong-law of large numbers on the tail-field with Bernoulli parameter q.  

Hence, the strong-law does not entail the weak-law with the same parameter value. 

 

Given an observed history, hj = {X1 = x1, X2 = x2, …, Xj = xj}, the Bayesian agent in 

Elga’s example assigns a purely finitely additive conditional probability to the 

distribution of the change point (N) so that, with conditional probability 1, the change 

point is arbitrarily far off in the future.  For each finite history hj and for each k = 1, 2, …, 

P(N > k | hj) = 1.  An agent who uses Elga’s finitely additive P-model precludes learning 

about the change point variable, N.  That agent is closed-minded in the relevant sense 

that, no matter what she observes, she is certain that the change point lies in the yet-to-be-

observed future. 

	

So, whenever the agent observes a finite history of coin flips with observed relative 

frequency of heads near to 9/10, she has high posterior probability for the tail-field event 

L1/10.  Likewise, whenever the agent sees a finite history of coin flips with observed 

relative frequency of heads near to 1/10, she/he has high posterior probability for the tail-

field event L9/10.  And since this agent is always sure, given each finite history hj, that the 

change point (N) is in the distant future of the sequence of coin flips, she always assigns 

arbitrarily high posterior probability to correctly identifying the tail-field event between 

L1/10 and L9/10.   

																																																								
15 Elga follows Rao and Rao (1983, pp. 39-40) using the technique of Banach limits to establish the 
existence of a finitely additive probability corresponding to the Pp,q distribution on repeated flips of the 
coin, based on the set of countably additive probabilities {Pn}. The method we use here, where the change 
point N is incorporated explicitly as a random variable in the finitely additive joint probability model, 
generates all the Pp,q distributions over sequences of repeated flips of a coin as may be obtained with 
Banach limits.  However, in addition it provides the added machinery needed to assess the agent’s 
conditional credences P(N | X1, …, Xn), which reflects also the agent’s opinion about whether the sequence 
of coin flips passed the change point.  Elga’s reasoning ignores the fact that, for each n = 1, …, P(N > n | 
X1, …, Xn) = 1, which is what the alternative analysis makes salient.         
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For example, this agent assigns probability near 1 to observing indefinitely long finite 

histories that have observed relative frequencies that linger near 9/10 exactly when the 

sequence x has a limiting relative frequency of 1/10.  This finitely additive credal state 

satisfies the conclusion of the finitely additive almost-sure convergence-to-the-truth 

result:  Almost surely, given the observed histories from a sequence x, the conditional 

probabilities converge to the correct indicator for the tail-behavior of the relative 

frequencies in x. 

Elga’s analysis to the contrary is based on having the agent consider conditional 

probabilities, P(L1/10 | hn) at histories hn that run beyond the change point.  But with 

Elga’s finitely additive probability P-model, the agent’s credence is 0 of ever witnessing 

such a history.  That is, Elga’s argument, whose conclusion is that the agent’s conditional 

probabilities converge to the wrong indicator function, requires the agent to condition on 

an event of P-probability 0, i.e., that she has made finitely many observations that go past 

the change point in the sequence.  But, at each finite stage in the history of observations, 

this event is part of a P-null-event where a failure of the (finitely additive) almost sure 

convergence to the truth is excused. Where this case differs from the countably additive 

one is that with the merely finitely additive probability P, the countable union of all these 

infinitely many P-null events (namely, that that change point has been reached by the kth 

observation, k = 1, 2, …), is a certain event – since the change point is certain to arrive, 

eventually.  

	

Apart from this peculiar merely finitely additive credal attitude that precludes learning 

about the change point N, there is something else unsettling about this Bayesian agent’s 

finitely additive model for coin flips.  Perhaps the following makes clearer what that 

problem is.  Modify Elga’s model to the finitely additive probability P’ so that      

    P’(×) = [P5/10, 1/10(×) + P5/10, 9/10 (×)] / 2,  

with the change point N chosen, just as before, by a purely finitely additive probability, 

P(N = n) = 0 for n = 1, 2, … .  Then the strong-law result applies to tail-field events and, 

P’-almost surely, the limiting frequency for heads is either 1/10 or 9/10; also, just as in 

Elga’s P-model.  However, the two finitely additive coins, P5/10, 1/10 and P5/10, 9/10, assign 
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the same probability to each finite history of coin flips.  Letting hn denote a specific 

history of length n,  

    P5/10, 1/10 (hn) = P5/10, 9/10 (hn) = 2-n. 

But then    P’(L1/10 | hn) = P’(L9/10 | hn) = ½ = P’(L1/10) = P’(L9/10),  

for each possible history.   That is, contrary to the strengthened convergence-to-the-truth 

result, in this modified P’-model, the agent is completely certain that her posterior 

probability for either of the two tail-field hypotheses, L1/10 or L9/10, is stationary at the 

prior value 1/2.  Under the growing finite histories from each infinite sequence of coin 

flips, the posterior probability moves neither towards 0 nor toward 1.  Within the P’-

model, surely there is no convergence to the truth about these two tail-field events given 

increasing evidence from coin-flipping.16  

 

Evidently, one aspect of what is unsettling about these finitely additive coin models is 

that the observed sequence of flips is entirely uninformative about the change point 

variable, N.   No matter what the observed sequence, the agent’s posterior distribution for 

N is her/his prior distribution for N, which is a purely finitely additive distribution 

assigning 0 probability to each possible integer value for N.  It is not merely that this 

Bayesian agent cannot learn about the value of N from finite histories.  Also, two such 

agents who have finitely additive coin models that disagree only on the tail-field 

parameter cannot use the shared evidence of the finite histories to induce a consensus 

about the tail-field events, since they are both certain that their shared evidence has yet to 

cross the change point.  In the next section, we use these themes about certainty and 

consensus based on shared evidence to provide a different answer to Belot’s question 

about what distinguishes modest from immodest credal states. 

 

4.  On standards for epistemic modesty using asymptotic merging and consensus. 

In his [1877] paper, The Fixation of Belief, C.S.Peirce argues that sound methodology 

needs to defend a proposal for how to resolve interpersonal differences of scientific 

																																																								
16		The	P’-model	does	not	contradict	Savage’s	(1954)	finitely	additive	weak-law	result,	which	we	
reported	in	Section	1.			That	is,	the	P’-model	does	not	satisfy	Savage’s	requirement	that	the	rival	
statistical	hypotheses, P5/10,	1/10(×)	and	P5/10,	9/10(×)	have	different	likelihood	functions	given	some	P’-
non-null	data.				
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opinion.  Peirce asserts that the scientific method for resolving such disputes wins over 

other rivals (e.g., apriorism, or the method of tenacity) by having the Truth (aka 

observable Reality) win out – by settling debates through an increasing sequence of 

observations from well designed experiments.  With due irony, much of Peirce’s proposal 

for letting Reality settle the intellectual dispute is embodied within personalist Bayesian 

methodology.17  Here, we review some of those Bayesian resources regarding three 

aspects of immodesty. 

 

One kind of epistemic immodesty is captured in a dogmatic credal state that is immune to 

revision from the pressures of new observations.  Such a credal state is closed-minded.  

And a closely related, second kind of immodesty is that two rival dogmatic positions 

cannot find a resolution to their epistemic conflicts through shared observations.  They 

are persistent in their closed-mindedness.  These two suggest that a credal state can be 

assessed for epistemic immodesty according to three considerations: 

(i) how large is the set of conjectures, and 

(ii) how large is the community of rival opinions, and 

(iii) for which sets of sequences of shared observations 

does Bayesian conditionalization offer resolution to interpersonal credal conflicts by 

bringing the different opinions into a consensus regarding the truth.  In other words, 

qualitative degrees of epistemic immodesty are revealed with these three considerations, 

which synthesize criteria of asymptotic consensus and certainty.  We discuss this sense of 

“immodesty” in the remainder of this Section. 

 

We use as our starting point an important result due to Blackwell and Dubins (1962) 

about countable additive probabilities.  Let <X, B> be a measurable Borel product-space 

with the following structure. Consider a denumerable sequence of sets Xi (i = 1, …) each 

with an associated s-field Bi.  Form the infinite Cartesian product  X = X1 ´ … of 

denumerable sequences (x1, … ) = x Î X, where xi Î Xi.  That is, each xi is an atom of its 

																																																								
17	The irony is, of course, that Peirce objected to conceptualism (aka personalist probabilities) because he 
thought that it inappropriately combined subjective and objective senses of “probability.”  See his [1878] 
The Probability of Induction.	
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algebra Bi.  In the usual fashion, let the measurable sets in B be the s-field generated by 

the measurable rectangles.  

Definition: A measurable rectangle (A1 x … ) = A Î B is one where Ai Î Bi and 

Ai = Xi for all but finitely many i.   

 

Blackwell and Dubins (1962) consider the idealized setting where two Bayesian agents 

have this same measurable space of possibilities, each with her/his own countably 

additive personal probability, creating the two measure spaces <X, B, P1> and <X, B, P2>.  

Suppose that P1 and P2 agree on which measurable events have probability 0, and admit 

(countably additive) predictive distributions, Pi( × | X1, …, Xn) (i = 1, 2), for each finite 

history of possible observations.18 In order to index how much these two are in 

probabilistic disagreement, Blackwell and Dubins adopt the total-variation distance. 

 

Define  r( P1( × | X1=x1,  …, Xn=xn), P2( × | X1=x1,  …, Xn=xn) )  =  

supEÎB | P1(E | X1=x1,  …, Xn=xn) – P2(E | X1=x1,  …, Xn=xn) | 

The index r is one way to quantify the degree of consensus between the two agents who 

share the same history of observations, (x1, …, xn).  This index focuses on the greatest 

differences between the two agents’ conditional probabilities.   

 

Here is the related strong-law result about asymptotic consensus: 

(***)  [Blackwell and Dubins, 1962, Theorem 2] For i = 1, 2, 

Pi-almost surely, limn®¥ r( P1( × | X1=x1, …, Xn=xn), P2( × | X1=x1, …, Xn=xn) )  = 0. 

 

In words, the two agents are practically certain that with increasing shared evidence their 

conditional probabilities will merge, in the very strong sense that the greatest differences 

																																																								
18	Blackwell	and	Dubins	use	the	concept	of	predictive	distributions	to	mean	those	that	admit	regular	
conditional	distributions	with	respect	to	the	subalgebra	of	rectangular	events.	(See	Breiman,	1968,	p.	
77	for	a	definition	of	a	regular	conditional	distribution.)		For	discussion	of	countably	additive	
probabilities	that	do	not	admit	regular	conditional	distributions	see	Seidenfeld,	Schervish,	and	
Kadane	(2001,	p.	1614,	Corollary	1).	
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in their conditional opinions over all measurable events in B will diminish to 0.  And they 

remain practically certain of this future development for each (non-null) observed history. 

Thus, this result supports a conclusion about idealized asymptotic consensus from 

idealized application of the Scientific Method that Peirce asserted he could not prove but 

only defend as having no equal.19  

 

Since, for each event in the space B, the familiar strong-law convergence-to-the truth 

result applies, separately, to each investigator’s opinion, the added feature of merging 

allows a defense against the charge of individual “immodesty” by showing that two rival 

opinions come into agreement about the truth, almost surely, in the strong sense provided 

by the r-index.  In the setting of the Blackwell-Dubins (1962) result, almost surely two 

such investigators agree that they can resolve all conflicts in their credal states over all 

																																																								
19 In Section V of (1877) Peirce writes, 

To satisfy our doubts, therefore, it is necessary that a method should be found by which our beliefs 
may be determined by nothing human, but by some external permanency -- by something upon 
which our thinking has no effect. Some mystics imagine that they have such a method in a private 
inspiration from on high. But that is only a form of the method of tenacity, in which the 
conception of truth as something public is not yet developed. Our external permanency would not 
be external, in our sense, if it was restricted in its influence to one individual. It must be something 
which affects, or might affect, every man. And, though these affections are necessarily as various 
as are individual conditions, yet the method must be such that the ultimate conclusion of every 
man shall be the same. Such is the method of science. Its fundamental hypothesis, restated in more 
familiar language, is this: There are Real things, whose characters are entirely independent of our 
opinions about them; those Reals affect our senses according to regular laws, and, though our 
sensations are as different as are our relations to the objects, yet, by taking advantage of the laws 
of perception, we can ascertain by reasoning how things really and truly are; and any man, if he 
have sufficient experience and he reason enough about it, will be led to the one True conclusion. 
The new conception here involved is that of Reality. It may be asked how I know that there are 
any Reals. If this hypothesis is the sole support of my method of inquiry, my method of inquiry 
must not be used to support my hypothesis. The reply is this: 1. If investigation cannot be regarded 
as proving that there are Real things, it at least does not lead to a contrary conclusion; but the 
method and the conception on which it is based remain ever in harmony. No doubts of the method, 
therefore, necessarily arise from its practice, as is the case with all the others. 2. The feeling which 
gives rise to any method of fixing belief is a dissatisfaction at two repugnant propositions. But 
here already is a vague concession that there is some one thing which a proposition should 
represent. Nobody, therefore, can really doubt that there are Reals, for, if he did, doubt would not 
be a source of dissatisfaction. The hypothesis, therefore, is one which every mind admits. So that 
the social impulse does not cause men to doubt it. 3. Everybody uses the scientific method about a 
great many things, and only ceases to use it when he does not know how to apply it. 4. Experience 
of the method has not led us to doubt it, but, on the contrary, scientific investigation has had the 
most wonderful triumphs in the way of settling opinion. These afford the explanation of my not 
doubting the method or the hypothesis which it supposes; and not having any doubt, nor believing 
that anybody else whom I could influence has, it would be the merest babble for me to say more 
about it. If there be anybody with a living doubt upon the subject, let him consider it.  
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elements of B, and have their posterior probabilities almost surely concentrate on true 

hypotheses, by sharing increasing finite histories of observations from a sequence x.  

Thus, in fine Peircean style, they are not open-minded about the efficacy of the Scientific 

Method for creating consensus and certainty.     

 

Schervish and Seidenfeld (1990, section 3) explore several variations on this theme by 

enlarging the set of rival credal states in order to consider larger communities than two 

investigators, and by relaxing the sense of merging (or consensus) that is induced by 

shared evidence from a common measurable space <X, B>.  They show that, depending 

upon how large a set of different mutually absolutely continuous probabilities is 

considered, the character of the asymptotic merging varies.  This is where topology plays 

a useful role in formalizing “immodesty.”    

 

Here, we summarize three of those results.  Let R be the set of rival credences that 

conform, pairwise, to the Blackwell-Dubins conditions, above.   Consider three 

increasing classes of such communities.   

  

(1) If R is a subset of a convex set of rival credences whose extreme points are 

compact in the discrete topology, then all of R uniformly satisfies the Blackwell-

Dubins merging result.  That is, then merging in the sense of r occurs 

simultaneously over all of R.  

(2) If R is a subset of a convex set of rival credences whose extreme points are 

compact in the topology induced by r, then all that is assured is a weak-law 

merging.  That is, if {Pn, Qn} is an arbitrary sequence of pairs from R, and R Î R 

is an arbitrary credence from the set of rivals, then  

r( Pn(×|X1,  …, Xn), Qn(× |X1,  …, Xn ) ) 
6

 0. 

(3) And if R is a subset of a convex set of rival credences whose extreme points are 

compact in the weak-star topology induced by r, then not even a weak-law 

merging of the kind reported in (2) is assured. 

 



	 23	

Not surprising then, as the community R increases its membership, the kind of consensus 

that is assured – the version of community-wide probabilistic merging that results from 

shared evidence – becomes weaker.  So, one way to assess the epistemological 

“immodesty” of a credal state formulated with respect to a measurable space <X, B> is to 

identify the breadth of the community R  of rival credal states that admits merging 

through increasing shared evidence from B.  For example, the agent who thinks each 

morning that it is highly probable that the world ends later that afternoon has an 

immodest attitude because there is only the isolated community of like-minded pessimists 

who can reconcile their views with commonplace evidence that is shared with the rest of 

us. 

 

When the different opinions do not satisfy the requirement of mutual absolute continuity, 

the previous results do not apply directly.  Instead, we modify an idea from Levi [1980, 

§13.5] so that different members of a community of investigators modify their individual 

credences (using convex combinations of rival credal states) in order to give other views 

a hearing and, in Peircean fashion, in order to allow increasing shared evidence to 

resolve those differences. 

 

Let I = {i1, … } serve as a finite or countably infinite index set, and let R = {Pi: i Î I} 

represent a community of investigators, each with her/his own countably additive 

credence function Pi on a common measurable space <X, B>.  It may be that, pairwise, 

the elements of R  are not even mutually absolutely continuous.  In order to allow new 

evidence to resolve differences among the investigators’ credences for elements of B 

(rather than trying, e.g., to preserve common judgments of conditional credal 

independence between pairs of elements of B) each member of R shifts to a credal state 

by taking a mixture of each of the investigators’ credal states: a “linear pooling” of those 

states.  Specifically, for each i Î I, let 𝛼! =	{aij: aij > 0, 𝛼$59
5*+  = 1} serve as a set of 

weights that investigatori uses to create the credal state Qi = 𝛼$59
5*+ 𝑃$ to replace Pi.  It 

might be that for each i Î I, each Qi is self-centered in the following sense.  Let e > 0.  

The Qi might be self-centered in that aii ³ 1-e.  Then, pairwise, the Qi satisfy the 
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assumptions for the Blackwell-Dubins’ result (***) despite being self-centered.  

Depending upon the size of the community R, using the replacement credal states {Qi} 

results (1), (2), and (3) obtain. 

 

We conclude this discussion of probabilistic merging with a reminder that merely finitely 

additive probability models open the door to reasoning to a foregone conclusion, Kadane 

Schervish, and Seidenfeld [1996], in a different sharp contrast with the P’ model above to 

the almost sure asymptotic merging and convergence-to-the-truth results associated with 

countably additive probability models.  Key to these asymptotic results for countably 

additive probabilities is the Law of Iterated Expectations.   

 

Let X and Y be (bounded) random variables measurable with respect to a countably 

additive measure space <W, B, P>.  With E[X] and E[X | Y = y] denoting, respectively, the 

expectation of X and the conditional expectation of X, given the event Y = y, then   

Law of Iterated Expectations  E[X] = E[ E[X | Y] ]. 

 

As Schervish et al. established [1984], each merely finitely (and not countably) additive 

probability defined on a s-field of sets fails this law even when the variable X is an 

indicator variable.  That is, each merely finitely additive probability fails to be 

conglomerable in some denumerable partition, here associated with the random quantity 

Y.  Specifically, with a merely finitely additive probability P, there exists a measurable 

hypothesis H and denumerable partition of measurable events p = {Ei: i = 1, …} where  

P(H)  <  𝑖𝑛𝑓𝑖𝑚𝑢𝑚@A	∈	C P(H | Ei). 

Then, contrary to the Law of Iterated Expectations, with expectations E over all Ei Î p,  

    P(H) < E[ P[H | Ei Î p] ]. 

Let the random variable Y have a denumerable sample space, Y = {y1, y2, … }.  Associate 

the event Ei with the outcome Y = yi.  Then if P is non-conglomerable for H in the 

partition generated by Y, in the partition pY, then P fails the Law of Iterated Expectations 

in pY. 
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A set of such merely finitely additive probabilities, each of which is non-conglomerable 

in the same partition of the shared evidence, can display reasoning to contrary foregone 

conclusions with both in the short run in asymptotically with increasing shared evidence.  

Because the investigators’ conditional probabilities for a pair of contrary hypotheses {H1, 

H2} are non-conglomerable in the partitions of their increasing shared evidence, each 

investigator may become increasingly certain of a different hypothesis as a function 

solely of the sample size of their shared evidence, regardless what those samples reveal.  

Moreover, this assured increasing divergence in their updated opinions is a fact they are 

aware of ex ante. 

 

The lesson we draw is this.  Bayesian agents who use merely finitely additive 

probabilities face a trade-off between: 

• the added flexibility in modeling that comes with relaxing the constraint of 

countable additivity  

versus  

• the added restrictions on the kinds of shared evidence necessary to achieve the 

desirable methodological laws about asymptotic consensus and certainty 

illustrated in the countably additive strong-laws.  

 

5. Summary. Savage (1954) and Blackwell-Dubins (1962) offer important results 

showing that Bayesian methodology uses increasing shared evidence in order to temper 

and to resolve interpersonal disagreements about personal probabilities.  We contrast 

interpersonal standards of asymptotic consensus about certainties that arise from a 

sequence of shared evidence with Belot’s (2013) proposal to use a topological standard of 

“meagerness” in order to determine when a credal state is immodest, based on a stand-

alone assessment of that credal state.  

 

We understand Belot to endorse Topological Condition #1, which requires that comeager 

sets are assigned positive probability.  Where a probability model treats a comeager set as 

null, that shows the model is immodest because it dismisses a topological large set as 

probabilistically negligble.  But, in the light of the fact that the set of sequences whose 
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frequencies oscillate maximally is comeager, we see that all the familiar probability 

models violate Condition #1.  We believe that, also, Belot endorses Condition #2, which 

requires that a typical set of sequences should receive a typical probability, i.e., a meager 

set should be assigned probability 0.  This topological standard entails extreme a priori 

credences about the behavior of observed relative frequencies.  Condition #2 mandates 

that, with probability 1, observed frequencies oscillate maximally in order to avoid being 

contained in a meager set.  This creates its own kind of dogmatism since (almost surely) 

the conditional probability from this model persists in assigning conditional probability 1 

to the hypothesis that observed frequencies oscillate maximally. 

 

In contrast with Belot’s approach, in Section 4 we outline a different strategy for 

assessing epistemic modesty/immodesty, based on considerations of both asymptotic 

certainty and consensus among investigators who share evidence.  Belot’s strategy is to 

impose additional requirements that, in the spirit of coherence, apply to a stand-alone 

credence function.  We follow, e.g., Peirce in requiring that sound Scientific 

methodology provides investigators with the resources to resolve interpersonal 

disagreements through shared evidence.  This consideration allows for results about 

conditions for asymptotic consensus among a set of investigators to serve also as a 

standard for their epistemic modesty regarding interpersonal disagreements. 

 

As a separate issue, in Section 3 we discuss Elga’s (2016) reply to Belot’s analysis.  Elga 

focuses on the assumption of countably additivity in the strengthened convergence 

results.  His rebuttal to Belot’s analysis uses a merely finitely additive P probability to 

illustrate that merely finitely additive conditional probabilities need not satisfy the 

countably additive asymptotic (strong-law) convergence results.  These are the results 

that Belot argues reveals an immodesty in the countably additive Bayesian methodology.   

 

We agree with Elga (and as has been argued before) that the asymptotics of merely 

finitely additive conditional probabilities are different in kind from those of countably 

additive conditional probabilities.  But we do not agree with Elga about which are the 

relevant asymptotic results in his P-model for assessing Bayesian learning of limiting 
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frequencies.  In addition, the P-model fails Condition #1, which we understand is one of 

Belot’s standards for modesty.  

 

As we illustrate in Section 3, the conditional probabilities arising from a different (but 

related) merely finitely additive probability P’ fail the asymptotic certainty and consensus 

results that follow when either Savage’s or Blackwell-Dubins’ analysis applies.  We 

argue that the added generality afforded by merely finitely additive probabilities over 

countably additive probabilities carry an extra price if they are to be used reasonably.  

They require more restrictive conditions than do countably additive probabilities, if the 

sequence of conditional probabilities that arise from an increasing sequence of shared 

evidence is to resolve interpersonal credal disagreements. 

 

 

Appendix 

In his classic discussion of measure and category, Oxtoby [1980: Theorem 1.6 (p. 4) and 

Theorem 16.5 (p. 64)] establishes that, quite generally, a topological space that also 

carries a Borel measure can be partitioned into two sets: One is a measure 0 set and the 

other, which is its complement, is a meager set.  Here we show (Theorem A1) that this 

tension between probabilistic and topological senses of being a “small” set generalizes to 

sequences of random variables relative to a large class of infinite product topologies.  We 

follow that result with a corollary, namely, Proposition (**) in the main text is an 

instance of Theorem A1 for binary sequences.   

 

Let c be a set with topology Á and Borel s-field, B, i.e., the s-field generated by the open 

sets in Á.  Let c¥ be the countable product set with the product topology Á¥ and product 

s-field, B¥, which is also the Borel s-field for the product topology (because it is a 

countable product).  Let <W, A, P> be a probability space, and let {𝑋)})*+9  be a sequence 

of random quantities such that, for each n,  Xn: W ® c is A and B measurable.  Define X: 

W ® c¥ by X(w) = <X1(w), X2(w), …>.  Let SX = X(W) be the image of X, i.e., the set of 
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sample paths of X.  We denote elements of SX as y = <y1, y2, …>.   SX is a subset of c¥.  

Therefore, we endow SX with the subspace topology. In the remainder of this 

presentation, we identify certain subsets of SX as being either meager or comeager.  

These results depend solely on the topology for the measurable space <W, A>, and not on 

the probability P.  However, the probability P is needed in order to display the tension 

between the two, rival senses of being a “small” set.    

 

In what follows we require a degree of “logical independence” between the Xn’s. In 

particular, we need the sequence {𝑋)})*+9 	to be capable of moving to various places in c¥ 

regardless of where it has been so far.   

 

Condition A: Specifically, for each j, let Bj Î B be a set such that Bj has nonempty 

interior 𝐵5G.  Assume that for each n, for each x = <x1, …, xn> Î <X1, …, Xn>(W), and for 

each j, there exists a positive integer c(n, j, x) such that <X1, …, Xn, Xn+c(n, j, x)>-1({x} ´ 

𝐵5G) ¹ Æ.   

 

Condition A asserts that, no matter where the sequence of random variables has been up 

to time n, there is a finite time, c(n, j, x), after which it is possible that the sequence 

reaches the set 𝐵5G.  For example, suppose that each Xn is the average of the first n in a 

sequence of Bernoulli random variables and that {ej}5*+9 	is a sequence of positive real 

numbers whose limit is 0.  If Bj = (0, ej) for even j and Bj = (1-ej, 1) for odd j then, 

independent of the particular sequence x, the longest we would have to wait to reach Bj is  

𝑐),5 	= 	
𝑛(1 − 𝜀5)

𝜀5
		+ 	1 

in order to be sure that there is a sample path that takes us from an arbitrary initial sample 

path of length n to Bj by time n+cn,j.  Thus, cn,j is a worst case bound for waiting.   For 

some x = <x1,  …, xn>, the minimum c(n, j, x) might be much smaller than this cn,j.  For 

instance, with jointly continuous random variables with strictly positive joint density in 

which <X1, …, Xn>(W) = cn for all n, then c(n, j, x) = 1 for all n,  j, and x. 
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For each y Î SX, define t0(y) = 0, and for j > 0, define 

                               ì𝑚𝑖𝑛	{𝑛 > 𝜏53+(𝑦):	𝑦) ∈ 	𝐵5},	 if the minimum is finite, 
 tj(y)  =       í 
         î   ¥ 	             if  not. 

Let B = {y Î SX : 𝜏5(𝑦) < ¥ for all j}, and let A  =  SX \ B  =  Bc Ç SX. 

 

Note that A is the set of sample paths each of which fails to visit at least one of the Bj sets 

in the order specified.  Because we do not require that the sets Bj are nested, it is possible 

that the sequence reaches Bk for all k > j without ever reaching Bj.  Or the sequence could 

reach Bj before reaching Bj-1 but not after. 

 

Theorem A1:  A is a meager set.  

Proof: Write A = Èj Cj, where Cj = {y Î SX: 𝜏5(𝑦) = ¥}. Then A is meager if and only if 

Cj is meager for every j. We prove that Cj is meager for every j by induction. 

 

Start with j = 1. We have 𝜏5(𝑦) = ¥ if and only if  y Î C1  =  	9
)*+ {y Î SX: yn Î 𝐵+𝐜}.  To 

see that C1 is meager, notice that 𝐶+𝐜 = 𝐷)9
)*+ , where 

   D1 = SX Ç (B1 ´ c¥),  

and for n > 1,   Dn = SX Ç (cn-1
´ B1 ´ c¥).   

Each Dn contains a nonempty sub-basic open set On obtained by replacing B1 in the 

definition of each Dn by its interior 𝐵+G.  So 𝐶+𝐜	contains the nonempty open set O = 

𝑂)9
)*+ .   

 

Next, we show that O is dense; hence, C1 is meager as it is nowhere dense.  We verify 

that O Ç E ¹ Æ for every nonempty basic open set E.  If E is a nonempty basic open set, 

then there exists an integer k and there exist nonempty open subsets E1, …, Ek of c such 

that  

E = SX Ç (E1 ´ … ´ Ek ´ c¥). 
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Let y Î E, and let xk be the first k coordinates of y. Then there exist points in SX whose 

first k coordinates are xk and whose k + c(k, 1, xk) coordinate lies in 𝐵+G.  Hence, 

O Ç E  Ê  SX Ç (E1 ´ … ´ Ek ´ χU(V,+,WX)3+´	𝐵+G ´ c¥) ¹ Æ. 

 

Next, for j  > 1, assume that Cr is meager for all r < j.  To complete the induction, we 

show that Cj is meager, which follows the same reasoning as in the base case. Write  

Cj = Cj-1 𝐹Z9
Z	*	53+  

Where  Fr  =  {y Î SX: tj-1(y) = r and yn Î 𝐵5𝐜	for all n > r}. 

It suffices to show that each Fr is meager.  

Notice that Fr is a subset of 

Gr = {y Î SX: yr Î Bj} Ç {y: for all n > r, yn Î 𝐵5𝐜} 

It suffices to show that Gr is meager.  

As in the case j = 1, write 𝐺Z𝐜 = {y Î SX: yr Î 𝐵Z𝐜} È 𝐷)9
)	*	Z\+  

where,    Dn = SX Ç (cn-1
´ Bj ´ c¥).   

Each Dn contains a nonempty sub-basic open set On obtained by replacing each Bj in the 

definition of each Dn by its interior 𝐵5G.  So 𝐺Z𝐜 contains a nonempty open set  

O = 𝑂)9
)	*	Z\+ .  

 

Last, we establish that O is dense; hence, Gr is meager.  Reason as in the base case j = 1.  

We verify that O Ç E ¹ Æ for every nonempty basic open set E.  If E is a nonempty basic 

open set, then there exists an integer k and there exist nonempty open subsets E1, …, Ek 

of c such that E = SX Ç (E1 ´ … ´ Ek ´ c¥).  Let y Î E, and let xk be the first k 

coordinates of y. Then there exist points in SX whose first k coordinates are xk and whose 

k + c(k, j, xk) coordinate lies in 𝐵5G.  Hence, 

O Ç E  Ê  SX Ç (E1 ´ … ´ Ek ´ χU(V,5,WX)3+´	𝐵5G ´ c¥) ¹ Æ, 

which completes the induction. àT. A1 
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Next, return to consider the sequence {𝑋)})*+9 	of random variables described earlier. 

Suppose that each Xn is the sample average of some other sequence of random variables. 

That is, Xn = +
)

𝑌V)
V*+ , where each Yk is finite. Assume that Condition A obtains.  

Namely, assume that the dependence between the Yk is small enough so that c(n, j, xk) < 

¥, for all n, j, xk. For example, assume that there exist c < d with c either finite or c = -¥, 

and either with d finite or d = ¥, such that for each j > 1 and each y Î <Y1, …, Yj-1>(W),   

𝑠𝑢𝑝_∈`aYj(w) = d  and  𝑖𝑛𝑓_∈`aYj(w) = c,  

where    Ay = {w: <Y1(w), …, Yj-1(w)> = y}. 

 

Then Condition A obtains for a sequence of iid random variables. It also obtains for a 

sequence of random variables such that {Y1, …, Yn} has strictly positive joint density 

over (c, d)n for all n.  In such a case, we could let 

     ì [c, a]   if c is finite, 
  Bj   =      í 
            î  [-¥, a] 	 if  c = -¥ 

where c < a < d.  Then A contains all sample paths for which lim infn Xn > a along with 

some sample paths for which lim infn Xn = a.  If we repeat the construction of A for a 

countable collection of an with an ¯ c, then the union of all of the A sets is meager.  Then, 

the set of sample paths for which the lim infn Xn > c is meager. A similar construction 

shows that the set of sample paths for which lim supn Xn < d is meager. Hence the union 

of these last two sets is meager, and the sequence of sample paths along which Xn 

oscillates maximally is a comeager set. 

 

Theorem A1 applies directly to the sequence {𝑋)})*+9 . It shows that certain sets of sample 

paths of this sequence are meager or comeager.  If, as in the case of sample averages, 

each Xn is a function of {Y1, …, Yn}, we can evaluate the category of a set of sample 

paths of the {𝑌)})*+9  sequence.  If <X1, X2, …> is a bicontinuous function of <Y1, Y2, …>, 

then the two sets of sample paths are homeomorphic.  In particular, this implies that the 

category of a set of sample paths of one sequence will be the same as the category of the 



	 32	

corresponding set of sample paths of the other sequence: the one is meager if and only if 

the other is. 

 

In the case of sample averages, we can exhibit the bicontinuous function explicitly. To be 

specific, let c = Â, and for each n, define Xn = +
)

𝑌V)
V*+ .   Let X = <X1, X2, …> as above, 

with Y = <Y1, Y2, …>.  Let SX and SY be the sets of sample paths of X and Y, respectively. 

That is, SX = X(W) and SY = Y(W).  For each y Î SY, define 

f(y) =  ( …, +
)

𝑦V)
V*+ , …). 

For each x Î SX, define 

j(x) =  (x1, 2x2 - x1, …, nxn – (n-1)xn-1, …). 

 

Then, by construction, f(Y) = X and j(X) = Y. That is j: SX ® SY is the inverse of f: SY 

® SX.  In order to have the category of the two sample paths to be the same, it is 

sufficient that both f and j are continuous. If they are continuous as functions both from 

and to Â¥, then they will be continuous in their subspace topologies. It suffices to show 

that f-1(B) and j-1(B) are open for each sub-basic open set B. Every sub-basic open set is 

of the form B = 𝐵)9
)*+ 	where each Bn = Â except for one value of n = n0 for which 𝐵𝒏𝟎 

is open as a subset of Â. Then each of f-1(B) and j-1(B) has the form C ´ Â¥ where C is 

a n0-dimensional open subset of ℜ)e; hence both sets are open, and we have that SX is 

homeomorphic to SY. 

 

The Proposition (**) in the main text is an instance of Theorem A1 for binary sequences.   

 

 

  



	 33	

References 

Belot, G. (2013) Bayesian Orgulity.  Phil. Sci. 80: 483-503.  
Billingsley, P (1986) Probability and Measure, 2nd ed. New York: John Wiley. 
Blackwell, D. and Dubins, L. (1962)  Merging of opinions with increasing information. 
 Ann. Math. Stat. 33: 882-887. 
Breiman, L. (1968) Probability. Reading, MA: Addison-Wesley, 
Calude, C. and Zamfirescu, T. (1999) Most numbers obey no probability laws. Publ.  

Math. Debrecen 54: 619-623. 
Dubins, L, and Savage, L.J. (1965) How to Gamble if You Must: Inequalities for  

Stochastic Processes. New York: McGraw-Hill. 
Edwards, W., Lindman, H., and Savage, L.J. (1963) Bayesian statistical inference for  

psychological research. Psych. Rev. 70: 193-242. 
de Finetti, B. (1937) Foresight: Its logical laws, its subjective sources. In H.E.Kyburg, Jr. 
 and H.Smokler (eds.) Studies in Subjective Probability, 1964.  New York: John  
 Wiley,  pp. 93-158. (Translated from the French version by H.E.Kyburg, Jr.) 
Dubins, L.E. (1975) Finitely additive conditional probabilities, conglomerability, and 
 disintegrations.  Ann. Probability 3: 89-99. 
Elga, A. (2016) Bayesian Humility.  Phil. Sci. 83: 305-323. 
Kadane, J.B., Schervish, M.J. and Seidenfeld, T. (1986) Statistical Implications of  

Finitely Additive Probability. In P.K.Goel and A. Zellner (eds.) Bayesian  
Inference and Decision Techniques 
. Elsevier: Amsterdam, pp. 59-76.  

Kadane, J.B., Schervish, M.J., and Seidenfeld, T. (1996) Reasoning to a Foregone 
 Conclusion.  JASA 91: 1228-1235.  
Levi, I. (1980) The Enterprise of Knowledge.  Cambridge: MIT Press. 
Oxtoby, J.C. (1957) The Banach-Mazur Game and Banach Category Theorem, in 
 Dresher, M., Tucker, A. W., & Wolfe, P. Contributions to the Theory of Games 
 (Vol. 3). Princeton University Press: pp. 159-163 
Oxtoby, J.C. (1980) Measure and Category (2nd edition). Springer-Verlag. 
Peirce, C.S (1877) The Fixation of Belief. Popular Science Monthly. 
Peirce, C.S. (1878) The Probability of Induction.  Popular Science Monthly. 
Savage, L.J. (1954) The Foundations of Statistics.  New York: J. Wiley Pub. 
Schervish, M.J., Seidenfeld, T., and Kadane, J.B. (1984) The Extent of Non-
 conglomerability of finitely additive probabililties.  Z.Wahr. 66: 205-226.  
Schervish, M.J. and Seidenfeld, T. (1990) An approach to certainty and consensus with 
 increasing evidence. J. Statistical Planning and Inference 25: 401-414. 
Seidenfeld, T., Schervish, M.J., and Kadane, J.B. (2001) Improper Regular Conditional 
 Distributions.  Ann. Probability 29: 1612-1624. 


